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Abstract

This article descibes the HyCuda code-generator, that generates a Hybrid algorithm-
framework that can be integrated in any C++(11) project. The framework implements
a template metaprogramming mechanism that takes care of all memory-transfers, based
on an input-file that describes the specifics of the algorithm. No extra care has to be
taken when it is decided that a subroutine needs to be executed on a different de-
vice. Also, due to the compile-time nature of template metaprogramming, there is
no overhead in deciding which routines (CPU- or GPU-code) to call (i.e. no runtime
conditionals).

1 Introduction

CUDA (Compute Unified Device Architecture), is a computational framework by NVidia,
now implemented on all modern NVidia GPU’s (Graphics Processing Units). The framework
allows for programming non-graphical applications that run on the highly parallel GPU ar-
chitecture, using many different processes (threads) to process the data. The programming-
language, CUDA-C, is like C or even partial C++, with some additional syntax.

Because of the insanely parallel nature of GPU’s, some calculations can be accellerated
by executing them as a kernel on the GPU instead of the CPU. Often, these calculations are
subroutines to some larger algorithm, containing many more substeps. However, it is not
always clear in advance which routines should best be executed on the CPU, and which on
the GPU. Switching between devices is nontrivial, because data has to be up to date and
ready to be read/written to by the device in question. These difficulties call for a mechanism
that allows the programmer to try different combinations (paths) of devices without much
effort, in order to choose the best option.

The HyCuda code-generator generates such a framework, based on a specification file
that describes some properties of the algorithm. It generates C++11 header- and source-
files, only a few of which have to be modified by the programmer in order to implement the
algorithm itself. The structure of the specification-file and options to HyCuda, as well as
the generated template mechanism, will be described in this document.

2 Specification-File

The specification-file tells HyCuda what you want to name the generated class, in which
namespace you want to embed it, what the type of your input-data is, how you want to
allocate memory and most importantly, what your algorithm looks like. It consists of 4
sections, seperated by two consecutive percent-signs (%%):

1. Directives
2. Memory
3. Routines
4. Order of execution

Each of the sections above will now be discussed in more detail. Keywords specific to Hy-
Cuda are prefixed by a single percent-sign, in order to be able to distinguish them from C++
keywords. There are two types of comment available in the HyCuda specification-file. Both
end-of-line comments (// single-line comment) as C-style comments (/* multi-line

1



Keyword Default
namespace global namespace
class-name HyCudaAlgorithm

parameters Params

memory %dynamic

include no pre-includes

Table 1: Allowed keywords in the first (directives) section of the specification file, and their default
values.

comment */) are supported. The internals of the spec-file will be discussed in the com-
ing sections. Those who want to see what the final product looks like, can scroll to Section
4.

2.1 Directives

The syntax of the directives-section is

% keyword: value

where keyword is one of those listed in Table 1. When a keyword is not listed, the default-
value will be taken.

2.1.1 namespace

When a namespace is specified, all HyCuda classes will be defined within this namespace.
When no namespace is specified, all HyCuda-related classes will be declared in the global
namespace.

2.1.2 class-name

The name of the class that will eventually be used to run the algorithm is specified by
class-name. By default, the resulting class will be called HyCudaAlgorithm. For the re-
mainder of this document, the resulting class will be refered to as such.

2.1.3 parameters

The algorithm assumes that a set of paramaters might be necessary to determine its be-
havior. These parameters will be listed in a struct, declared in the specification following
the parameters-keyword. An instance of this struct will be passed to the algorithm, where
its contents can be passed to the subroutines where necessary. Its syntax is regular C++,
omitting the struct keyword and closing semicolon. For example:

% parameters: Params { // opening ’{’ must be on the same line

float x, y, z;

int q;

}

If the parameters are omitted, an empty struct called Params will be generated.

2.1.4 memory

There are two memory-allocation modes available, indicated by the keywords %static and
%dynamic. When the mode is set to static, HyCuda generates code to allocate all memory
when the final HyCudaAlgorithm-object is instantiated, and frees the memory when the
object is destroyed. For this to be possible, the number of elements in each block of memory
must be known in advance, and be independent of runtime input. The memory-sizes (see
Section 2.2) can still be symbolic values, but these should be defined (e.g. in an enum or by
#define’s) by the user and pre-included (e.g. using %include) in order to be seen by the
allocation functions.

When the allocation-mode is set to %dynamic, array-sizes may depend on the runtime
input. Only when the process-member is called on the object, to which the input and
output parameters are passed (Section 2.2.1), will the memory be allocated. More on this
on Section 2.2.

2



2.1.5 include

The include keyword allows for inclusion of header files by the algorithm. These header
files may be standard-library files, within angle brackets (<file>), or user-generated files
within double quotes ("file").

2.2 Memory

The memory-section contains information about all memory that is potentially ‘shared’
between the CPU and GPU. Based on this section, HyCuda will generate code that allocates
the memory on both devices. The syntax is as follows:

identifier [(io-specifiers)]: data-type, elements

Here, identifier is the name of the variable (pointer) that points to the memory,
io-specifiers is an optional sequence of input (i) and output (o) specifications, data-type
is the type of the variable (omitting the asterix even though they will be pointers eventually),
and elements is the number of elements in the array. The latter can both be a hardcoded
numerical value, or a symbolic variable.

2.2.1 Input/Output

The io-specifiers tell HyCuda which variables will be used as input or output. When a
variable is marked as input (i), output (o) or both (io), HyCuda assumes that these vari-
ables already exist on the CPU. Two structs will be declared, Input and Output, containing
pointers that should be initialized by the programmer and passed to process to execute the
algorithm. HyCuda will make sure that the output will be readily available (on the CPU)
when the algorithm returns.

More precisely, both Input and Output contain std::pair’s of pointers and sizes
(size t). For example:

struct Input

{

std::pair<float*, size_t> vec1;

// ...

}

The value passed as vec1.second will be assigned to the symbolic memorysize specified in
the HyCuda spec-file as the size of vec1. See also Section 4 for a detailed example.

2.2.2 Memory-Access

HyCuda will generate a Memory class, which will be one of the base-classes of
HyCudaAlgorithm. Memory owns two structures, hostMem and devMem, which contain point-
ers to all memory on the host and device respectively. Through these pointers, all memory
can be accessed. Also, an instance of devMem is copied to the device itself. A pointer to this
struct of device-pointers, dev devMem, can be passed to the kernels instead of having to pass
all necessary pointers individually.

2.3 Routines

The 3rd section contains information about every subroutine. For each subroutine, the
programmer needs to specify on which memory this routine depends, and in what way
(read, write or both). This helps HyCuda to determine which data has to be available on
which device at any point in the algorithm. The syntax of the routine-section looks like this:

function-identifier: memory-identifier (permissions), ...

For example, a function fun1 that will read from array1 and will both read and write to
array2 will be declared as

fun1: array1 (r), array2 (rw)

The memory-identifiers should match those declared in the memory-section, and all functions
that are part of the algorithm should be declared here.
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2.4 Order of Execution

The subroutines listed in the routine-section of the specification do not have to be declared
in the order in which they are intended to be executed. For extra flexibility, it is possible to
define the specific order of execution in the final section. The syntax of this final section is:

% order: $function-number, $function-number, ...

Here, function-number corresponds to the position (top = 1, downwards) of the function
in the previous section. When the order of execution is identical to the order in the 3rd
section, the keyword %default may be used:

% order: $1, $2, $3, $4

or

% order: %default

3 Using HyCuda

3.1 Files and Options

3.1.1 Files

When the specification-file has been constructed, it will be fed to HyCuda as its first input
argument. HyCuda can be called from the commandline, expecting the following syntax:

hycuda spec-file [options]

When HyCuda is called without any options, the files listed below are generated in the
current directory, where X denotes the class-name as specified in the specification (all low-
ercase).

X.h

X_algorithm.h

X_cudastopwatch.cuh X_cudastopwatch.ih X_cudastopwatch.cu

X_default_base.h

X_default_cpu.h X_default_cpu.ih X_default_cpu_impl.cc

X_default_gpu.h X_default_gpu.ih X_default_gpu_impl.cu

X_devicepolicies.h

X_hybrid.h

X_inputpolicy.h X_inputpolicy.ih X_inputpolicy_impl.cc

X_kernels.h X_kernels.cu

X_memory.h X_memory.ih X_memory.cu / X_memory.cc

X_stopwatch.h

X_timer.h X_timer.ih X_timer.cc

Makefile

There exist many common source-file-extensions in the world of C++; .cpp, .cc, .cxx

or .C for source-files and .h or .hpp for header-files. In addition to the familiar source-
and header-files, for which I have chosen the .cc and .h extension, there are a few other
extensions visible in the list of files above. The uncommon .ih-files are so-called implemen-
tation headers, which should by convention only be included by source-files. The purpose
of these implementation headers is to include other headers that are only needed by the
implementation, or contain using-directives (e.g. using namespace std;) for convenience
of the programmer.

The CUDA sources have the .cu extension, and header-files that are exclusively seen by
the CUDA compiler (nvcc) have the .cuh extension. Even though these are a lot of files,
the user will only have to be familiar with a few to be able to implement his own algorithm
(Section 3.3.

3.1.2 -generate main (-m)

Optionally, an additional file (X main.cc), containing the main function, can be generated
using the -generate main (-m) flag. This file also contains the instan tiation of the resulting
object, and a call to the algorithm (which is implemented as a sequence of empty functions).

4



3.1.3 -regenerate implementations (-r)

To prevent modified implementation-files to be overwritten when HyCuda is re-run, some
user-implementated are not regenerated when they already exist (these files are listen in Sec-
tion 3.3). This default behavior may be overruled by using the regenerate implementations

(-r) flag.

3.1.4 -folder (-f)

By default, the files will be generated in the current directory. The -folder=... (-f)

flag specifies a different (pre-existing) directory for the files to be put into.

3.2 Members

This section will provide an overview of the members that the resulting class has access to,
some of which have already been mentioned previously in the text. Not all of the members
actually belong to the final class. Instead, they belong to one of the baseclasses up in the
hierarchy. For more information about the class-hierarchy, the user is referred to Section
6.1. Table 2 lists the members that could be helpful in defining the implementation of your
routines.
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Member Access Type Class Description

hostMem private HostMem Memory
Structure containing
host-pointers.

devMem private DevMem Memory
Structure containing
device-pointers.

dev devMem private DevMem* Memory

Same as devmem,
but points to a struct
on the device.

resetHostMem private void (*)(unsigned char) Memory

Sets every byte in
the host-memory to
the character specified.

resetDeviceMem private void (*)(unsigned char) Memory

Sets every byte in
the device-memory to
the character specified.

runtimes private std::vector<double> Timer

When the macro
NO TIMERS has not been
defined, all the runtimes
are stored here.

memcpytimes private std::vector<double> Timer

When the macro
NO TIMERS has not been
defined, all the
(cuda)memcpy-times are
stored here.

elapsedRunTime public
double(*)(int n)

std::vector<double>(*)()
Timer

Returns the time taken
to execute the n’th routine
or the complete vector
(== runtimes)

elapsedMemcpyTime public
double(*)(int n)

std::vector<double>(*)()
Timer

Returns the time taken
to execute the memcpy’s
prior to the n’th routine
or the complete vector
(== memcpytimes)

process public void (*)(Input const &, Output const &) Algorithm
Executes the routines
in the specified order.

printTimes public void (*)() Algorithm

Prints a complete list
of runtimes and
memcpy-times

Table 2: Members of the resulting algorithm-class and the (base-)class in which they are declared.
Note: the access-rights are with respect to the final class. This means that a member that
is public in its own class can be private in the inheriting class.

3.2.1 init() and close()

Two other members, which are not listed in Table 2, should be mentioned. These are the
functions init() and close(). These functions are called by process() before and after
the routines have been executed. Each of the classes Hybrid , DefaultCPU and DefaultGPU

are equipped with these members, but the former merely calls those of its parents. That is,
Hybrid ’s init() and close() members will call those of DefaultCPU and DefaultGPU, in
that order.

By default, the init() implementation in DefaultCPU only calls the private member
setMemSizes(), which sets the memory-size variables based on the input. This means
that when the size of an input or output-variable is bound in the specification-file to some
symbol (vectorSize in the example of Section 4), the symbol will be assigned the value
corresponding to the size of the input. The default implementation of DefaultGPU::init()
does absolutely nothing.

The default implementation of DefaultGPU::close() however, makes sure that the
device and host are synchronized before returning from process() by calling
cudaDeviceSynchronize(). In contrast, DefaultCPU::close() is an empty function by
default.
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3.3 User Implementations

When all files have been generated, it is up to the programmer to implement the actual
algorithm. Several files may be modified to do so:

X.h Specify the device-order.
X default base.h Declare additional members, used by

the DefaultCPU- and DefaultGPU-classes.
X default cpu impl.cc Implement the CPU-routines.
X default cpu impl.ih CPU implementation header.
X default cpu impl.cu Implement the GPU-routines.
X default cpu impl.cc GPU implementation header.
X kernels.h Declare the GPU-kernels.
X kernels.cu Implement the GPU-kernels.
X main.cc Optionally implement main().

3.3.1 Main Header: X.h

The final header-file, X.h (where X still denotes the class-name), contains only some typedef’s,
and may look something like this:

1 /* hycudaalgorithm.h */

2
3 #include "hycudaalgorithm_algorithm.h"

4 #include "hycudaalgorithm_hybrid.h"

5 #include "hycudaalgorithm_devicepolicies.h"

6
7 namespace Example {

8
9 // Specify which device to use for each of the routines (CPU/GPU)

10 typedef DevicePolicies <

11 Fun1Device < CPU >,

12 Fun2Device < CPU >,

13 Fun3Device < CPU >

14
15 > CustomPolicy;

16
17 typedef Hybrid_ < CustomPolicy > Hybrid;

18 typedef HyCudaAlgorithm_ < Hybrid > HyCudaAlgorithm;

19
20 } // namespace Example

The very last definition is defining the class that the end-user will actually instantiate
(HyCudaAlgorithm). For each subroutine, the device that will execute it is defined in the
first definition. In this example, the subroutines were named fun1, fun2 and fun3 respec-
tively. HyCuda has generated corresponding template classes Fun1Device, Fun2Device and
Fun3Device, from which the template argument (either CPU or GPU) tells the mechanism
which function to call.

3.3.2 Baseclass Header: X default base.h

To avoid having to modify the DefaultCPU and DefaultGPU header-files, and allow data to be
shared between these classes, they are both virtually derived from DefaultBase. Whenever
the programmer feels that it is necessary to declare additional datamembers (that are not
suitable as parameters), this interface can be used to do so. Keep in mind though that this
data will not be available on the GPU, unless copied manually. The example (Section 4)
illustrates one such application.

3.3.3 Default CPU-implementations: X default cpu impl.cc

This is where you should implement the CPU-routines. Because the DefaultCPU has both
DefaultBase and Memory as its base-classes, it has access to each of the memory-locations
in the hostMem member (owned by Memory), and to additional members defined in the
DefaultBase interface.
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3.3.4 Default GPU-implementation: X default gpu impl.cu

This file is meant for the CPU-side of the GPU-implementation. It is where you call your ker-
nels, your Thrust-algorithms, or any other CUDA-related functions. The implementation-
header X default gpu .ih includes the declarations of your kernels (X kernels.h), which
should be defined in a file called X kernels.cu. If you need to include, for example, Thrust-
headers, it is recommended to do this in the implementation header as well.

3.3.5 Main: X main.cc

If the -m option was passed to HyCuda, an additional file containing the main function will
be generated. In this file, one has to assign the appropriate parameters to the Params object,
and initialize the contents of Input and Output. Section 4 will show how exactly this goes
about.

4 Example

4.1 Specification-File

This section will provide an example specification-file and implementation, implementing a
simple 3-step algorithm, assuming the existence of two vectors, vec1 and vec2:

1. Multiply vec1 and vec2 by the parameter m1.
2. Add the two vectors together, and store the result in vec3.
3. Multiply vec3 by another parameter m2.
4. Calculate the sum of vec3.

These three steps can easily be factored into one, but for the sake of illustration, they will
be kept seperately. The input vectors vec1 and vec2 will be stored in some file, and will
serve as the input of our algorithm. The specification-file can now be defined as follows:

1 /* spec.hycuda */

2
3 // Directives

4 % namespace: Example class -name: ExampleAlgorithm parameters: Params {

5 float m1;

6 float m2;

7 }

8
9 %% // Memory -Section

10 vec1 (i) : float , vectorSize

11 vec2 (i) : float , vectorSize

12 vec3 : float , vectorSize

13 sum (o) : float , 1

14
15 %% // Routine -dependencies

16 multiplyM1: vec1 (rw), vec2 (rw)

17 multiplyM2: vec3 (rw)

18 addVec1Vec2: vec1 (r), vec2 (r), vec3 (w)

19 sumVec3: vec3 (r), sum (w)

20
21 %% // Routine -order

22 % order: $1, $3 , $2 , $4

We have chosen for the default memory-allocation scheme (dynamic), because we cannot
know in advance how large the vectors in the file are. Another option would have been
to set a maximum vector size, and check if vectorSize is within this maximum. However,
because we only process one run of data, the dynamic scheme will not cause any unnecessary
overhead.

To generate the framework, call HyCuda from the commandline:

$ hycuda spec.hycuda -m
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4.2 Implementation

4.2.1 main

Because we identified vec1, vec2 and sum as input and output, these will be assumed to
exist on the CPU and will not be allocated anymore (on the host). The main-function will
therefore be responsible for reading the input from a file, and passing pointers to the input
and their size to the process member.

1 /* examplealgorithm_main.cc */

2
3 #include "examplealgorithm.h"

4 using namespace Example

5 using namespace std;

6
7 size_t readVectorsFromFile(char const *filename ,

8 float **v1 , float **v2);

9
10 int main(int argc , char **argv)

11 {

12 // Initialize parameters

13 Params params;

14 params.m1 = 2;

15 params.m2 = 3;

16
17 // Initialize vectors

18 float *v1, *v2;

19 size_t vectorSize = readVectorsFromFile(argv[1], &v1, &v2);

20
21 // Initialize input

22 Input in;

23 in.vec1 = {v1 , vectorSize };

24 in.vec2 = {v2 , vectorSize };

25
26 // Initialize output

27 float sum;

28 Output out;

29 out.sum = {&sum , 1};

30
31 // Process

32 ExampleAlgorithm alg(params);

33 alg.process(in , out);

34
35 // Output

36 cout << "Sum: " << sum << ’\n’;

37 }

4.2.2 Baseclass header

We slightly modify the baseclass header to contain the number of blocks and threads that
will be used by the kernels. This will prevent us from having to recalculate these values in
each of the GPU routines again and again. Strictly speaking, these values should be stored
in the DefaultGPU-class, as they’re not being used by the CPU implementation. However,
the DefaultGPU-header will be regenerated when we call HyCuda again for some reason,
thereby losing any changes we made. This is not true for the baseclass header.

1 #ifndef ExampleAlgorithm_DEFAULT_BASE_INCL

2 #define ExampleAlgorithm_DEFAULT_BASE_INCL

3 #include "examplealgorithm_algorithm.h"

4
5 namespace Example {

6
7 class DefaultBase

8 {

9 protected:
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10 uint blocks;

11 uint threads;

12 };

13
14 } // namespace Example

15 #endif // ExampleAlgorithm_DEFAULT_BASE_INCL

4.2.3 GPU Implementation

To implement the GPU routines, we modify the examplealgorithm gpu impl.cu file, which
will call our kernels. The implementation details are irrelevant, and will not be discussed in
detail. The previous section concerned the addition of two members, threads and blocks,
to the baseclass. These will be initialized by DefaultGPU’s init() member. For the sake of
completeness, the entire GPU implementation is listed below, including the kernel declara-
tions and implementations.

1 /* examplealgorithm_kernels.h */

2
3 #ifndef ExampleAlgorithm_KERNELS_INCLUDED

4 #define ExampleAlgorithm_KERNELS_INCLUDED

5
6 namespace Example {

7
8 __global__ void vectorMultiply(float *v1 , uint size , float mul);

9 __global__ void vectorAdd(float *v1 , float *v2 , float *dst , uint sz);

10 __global__ void vectorSum(float *v1 , uint size , float *result);

11
12 } // namespace Example

13
14
15 #endif // ExampleAlgorithm_KERNELS_INCLUDED

1 /* examplealgorithm_gpu_impl.cu */

2
3 #include "examplealgorithm_default_gpu.ih"

4
5 void DefaultGPU ::init(Input const &in, Output const &out)

6 {

7 uint const maxThreadsPerBlock = 512;

8 blocks = (vectorSize + maxThreadsPerBlock - 1) /

maxThreadsPerBlock;

9 threads = vectorSize / blocks + 1;

10 }

11
12 void DefaultGPU ::close ()

13 {

14 cudaDeviceSynchronize (); // Wait for GPU to be finished before

returning

15 }

16
17 void DefaultGPU :: multiplyM1_ ()

18 {

19 cudaStream_t stream1 , stream2;

20 cudaStreamCreate (& stream1);

21 cudaStreamCreate (& stream2);

22
23 vectorMultiply <<< blocks , threads , 0, stream1 >>>

24 (devMem.vec1 , vectorSize , d_params.m1);

25 vectorMultiply <<< blocks , threads , 0, stream2 >>>

26 (devMem.vec2 , vectorSize , d_params.m1);

27 }

28
29 void DefaultGPU :: multiplyM2_ ()

30 {
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31 vectorMultiply <<< blocks , threads >>> (devMem.vec3 , vectorSize ,

d_params.m2);

32 }

33
34 void DefaultGPU :: addVec1Vec2_ ()

35 {

36 vectorAdd <<< blocks , threads >>> (devMem.vec1 , devMem.vec2 ,

devMem.vec3 , vectorSize);

37 }

38
39 void DefaultGPU :: sumVec3_ ()

40 {

41 cudaMemset(devMem.sum , 0, sizeof(float));

42 vectorSum <<< blocks , threads , threads * sizeof(float) >>> (devMem

.vec3 , vectorSize , devMem.sum);

43 }

1 /* examplealgorithm_kernels.cu */

2
3 #include "examplealgorithm_kernels.h"

4
5 __global__

6 void Example :: vectorMultiply(float *v1, uint size , float multiplier)

7 {

8 uint tid = threadIdx.x + blockIdx.x * blockDim.x;

9 uint nThreads = blockDim.x * gridDim.x;

10
11 uint idx = tid;

12 while (idx < size)

13 {

14 v1[idx] *= multiplier;

15 idx += nThreads;

16 }

17 }

18
19 __global__

20 void Example :: vectorAdd(float *v1, float *v2, float *dest , uint size)

21 {

22 uint tid = threadIdx.x + blockIdx.x * blockDim.x;

23 uint nThreads = blockDim.x * gridDim.x;

24
25 uint idx = tid;

26 while (idx < size)

27 {

28 dest[idx] = v1[idx] + v2[idx];

29 idx += nThreads;

30 }

31 }

32
33 __global__

34 void Example :: vectorSum(float *v1, uint size , float *result)

35 {

36 __shared__ extern float buffer [];

37
38 // initialize shared memory to part of the vector (# elements == #

threads per block)

39 uint tid = threadIdx.x;

40 uint idx = blockIdx.x * blockDim.x + tid;

41 if (idx < size)

42 buffer[tid] = v1[idx];

43 else

44 buffer[tid] = 0;

45
46 __syncthreads ();

47
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48 uint currentArraySize = blockDim.x;

49 while (currentArraySize > 1)

50 {

51 uint secondHalfBegin = (1 + currentArraySize) / 2;

52 if (secondHalfBegin + tid < currentArraySize)

53 buffer[tid] += buffer[secondHalfBegin + tid];

54
55 __syncthreads ();

56 currentArraySize = secondHalfBegin;

57 }

58
59 // buffer now contains the (partial) sum of this block -> atomic

add to result

60 if (tid == 0)

61 atomicAdd(result , buffer [0]);

62 }

4.2.4 CPU Implementation

The CPU routines are implemented in the examplealgorithm default cpu impl.cc, listed
below. In this case, the init() function can be kept as is, only calling setMemSizes() to set
the value of vectorSize, which was deduced from the input. When the size of an array can
nót be deduced from input, this is where you should set the size (provided it is a symbolic,
non-const value in a dynamic scheme).

1 /* examplealgorithm_default_cpu.cc */

2
3 #include "examplealgorithm_default_cpu.ih"

4
5 void DefaultCPU ::init(Input const &in, Output const &out)

6 {

7 setMemSizes(in, out);

8 }

9
10 void DefaultCPU ::close ()

11 {

12 }

13
14 void DefaultCPU :: multiplyM1_ ()

15 {

16 float *vec1 = hostMem.vec1;

17 float *vec2 = hostMem.vec2;

18
19 float m1 = d_params.m1;

20 for (size_t i = 0; i != vectorSize; ++i)

21 {

22 vec1[i] *= m1;

23 vec2[i] *= m1;

24 }

25 }

26
27 void DefaultCPU :: multiplyM2_ ()

28 {

29 float m2 = d_params.m2;

30 float *vec3 = hostMem.vec3;

31 for (size_t i = 0; i != vectorSize; ++i)

32 vec3[i] *= m2;

33 }

34
35 void DefaultCPU :: addVec1Vec2_ ()

36 {

37 float *vec1 = hostMem.vec1;

38 float *vec2 = hostMem.vec2;

39 float *vec3 = hostMem.vec3;

40
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41 for (size_t i = 0; i != vectorSize; ++i)

42 vec3[i] = vec1[i] + vec2[i];

43 }

44
45 void DefaultCPU :: sumVec3_ ()

46 {

47 float *vec3 = hostMem.vec3;

48 float &sum = *hostMem.sum;

49 sum = 0;

50 for (size_t i = 0; i != vectorSize; ++i)

51 sum += vec3[i];

52 }

4.2.5 Main Header

When all the hard work has been finished, it is time to determine the devices that will
execute the functions. This is handled by the DevicePolicies typedefinition in the main
header: examplealgorithm.h. Let’s say we want to perform all routines on the GPU, except
for the last one. The header should be modified to look like this:

1 #include "examplealgorithm_algorithm.h"

2 #include "examplealgorithm_hybrid.h"

3 #include "examplealgorithm_devicepolicies.h"

4
5 namespace Example {

6
7 typedef DevicePolicies <

8 MultiplyM1Device < GPU >,

9 MultiplyM2Device < GPU >,

10 AddVec1Vec2Device < GPU >,

11 SumVec3Device < CPU >

12
13 > CustomPolicy;

14
15 typedef Hybrid_ < CustomPolicy > Hybrid;

16 typedef ExampleAlgorithm_ < Hybrid > ExampleAlgorithm;

17
18 } // namespace Example

4.3 Building the Example

When no additional source-files are added to the project, it should now be ready to be built
using the pre-generated Makefile. This Makefile was organized such that a C++11 capable
compiler will compile all C++ source-files (nvcc cannot parse all C++11 syntax yet), nvcc
will compile all CUDA source-files, and will link the resulting object files.

5 Manual Addition of Routines

It is not always convenient to re-run HyCuda when you need to add functionality, so this
section will provide instructions on how to do this manually. The next section (Sec. 6)
should contain enough background information to back this section up when needed.

5.1 Member Declarations

Let us start with declaring the new member-functions in every necessary header, assuming
that you want both a CPU and a GPU routine to be implemented. In the X default cpu.h

and X default gpu.h header-files, you will find function-declarations of the form void

routine() in the public section and void routine () (note the underscore) in the pri-
vate section of the class interface. This is where the new routine should be declared in
two-fold: with and without a trailing underscore. The non-underscored version is merely
a wrapper of the underscored version, and takes care of the timing (if necessary). Each of
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the non-underscored routines has an inline implementation in the same file, which looks like
this (same for DefaultGPU):

1 inline void DefaultCPU :: routineName ()

2 {

3 #ifndef NO_TIMERS

4 d_sw.start();

5 #endif

6
7 routineName_ ();

8
9 #ifndef NO_TIMERS

10 d_sw.stop();

11 runtimes.push_back(d_sw.read());

12 #endif

13 }

Assuming there are already other inline implementations present, you can simply copy-paste
and change the routine-identifier.

The Hybrid class also contains function-declarations in its public section (non-underscored).
The implementation is again a wrapper, this time of either the CPU or GPU version. Ex-
actly which one is determined by the DevicePolicies, which we will come to later. Their
inline implementation (in the same file) should look like this:

1 template <typename DevicePolicies , typename CPUType , typename GPUType >

2 void Hybrid_ <DevicePolicies , CPUType , GPUType >:: routineName ()

3 {

4 Sync <RoutineDevice , SourceDevice >( Memory :: hostMem.data , Memory ::

devMem.data , sizeof(float) * Memory ::vectorSize , this);

5
6 // ... other synchronizations

7
8 RoutineDevice:routineName ();

9 }

This is also the tricky part. You have to figure out for yourself which device has the data
that is used by this particular routine (SourceDevice), and make sure you synchronize with
it.

5.2 DevicePolicies

In the previous section, we have already encountered the DevicePolicies that are used to
synchronize data between CPU and GPU. These policies of course have to be declared some-
where, which is done in the X devicepolicies.h file. It defines the macro ADD DEVICE POLICY

which allows you to easily add policies. It expects 2 arguments: the name of the policy and
its ID, which should be unique! I suggest you just keep incrementing this ID to keep things
simple. Once your policy has been added, you can move back to the header file in which
Hybrid is declared.

A lot is going on in the private section of Hybrid , but we now focus on the list of
typedefs of the form

1 typedef typename UseParent <typename DevicePolicies :: template Get <

RoutineDevice >:: Device >:: Parent RoutineDevice;

Here, RoutineDevice is the device used for the routine you are adding. It uses the TMP
mechanism to find out which device, CPU or GPU, you have specified in the DevicePolicices.
Again, just copy-paste and make sure the names are consistent.

Of course, the typedef for DevicePolicies itself should also be edited. As you might
remember, it resides in the main header X.h (an example was shown in Section 4.2.5).

5.3 Adding it to the Algorithm

To finish things up, it should be called by process() in the final algorithm-class (X algorithm.h).
Simply look it up and add a call to whatever routine you have added by now. Make sure it
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is in the right place, corresponding to the synchronization you implemented in the Hybrid

class! All you need to do now is implement the new routines in the implementation files
(e.g. X default cpu impl.cc). Will it compile...?

6 Behind the Scenes: the Template Framework

6.1 Class Hierarchy

To gain some insight in the organisation of the generated framework, its class-hierarchy is
depicted in Figure 1. The direction of the arrow is towards the base class.

Figure 1: Class-hierarchy of the template framework generated by HyCuda. The arrows between
the blue blocks represent class-inheritance, whereas the dashed lines represent template
parameters.

The final Algorithm class is derived from Hybrid which is itself multiply derived from
both DefaultCPU and DefaultGPU. Hybrid takes a template parameter called DevicePolicies

to determine which of its parents, who provide the implementations, to use. The DevicePolicies
class itself has a list of policies of the form PolicyName<Device>, which can be recursively
searched to match a certain routine to its device.

At the root of the inheritance tree stand three classes, called DefaultBase, Memory and
Timer. Both DefaultCPU and DefaultGPU derive virtually from these classes, such that
they will share the same objects once instantiated.

The DefaultBase class is a convenience-class in which the user can add more data or
through which the CPU and GPU implementations can communicate. It also prevents the
user from having to modify the header-files corresponding to DefaultCPU and DefaultGPU,
which will be regenerated and overwritten on a second call to HyCuda.

Memory holds pointers to both the CPU and GPU memory. Both implementations need to
be aware of each memory-pool and when instantiated, the memory should only be allocated
once, hence the virtual derivation.

For your convenience, Timer will time every routine and every memory-transfer, such
that different paths through device-space can be compared without effort. Of course, there
is a little overhead involved in timing the algorithm. Therefore, when the macro NO TIMERS

is defined, this will not be done.

6.2 DevicePolicies

The class-template DevicePolicies is designed to serve as a template parameter to the
Hybrid struct. It offers a metaprogramming interface which can be investigated to find out
which device to use for each of the routines. Its definition is listed below. For convenience,
the output from the example in Section 4 is used.

1 // Possible devices

2 struct CPU {};

3 struct GPU {};

4 struct Dummy {};

5
6 // TMP if -construction
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7 template <bool val , typename TrueType , typename FalseType >

8 struct If

9 {

10 typedef TrueType Type;

11 };

12
13 template <typename TrueType , typename FalseType >

14 struct If<false , TrueType , FalseType >

15 {

16 typedef FalseType Type;

17 };

18
19 // Macro to easily create new device -policies

20 #define ADD_DEVICE_POLICY(name , id_) \

21 template <typename Device_ > \

22 struct name \

23 { \

24 typedef Device_ Device; \

25 enum { id = id_ }; \

26 };

27
28 // Device -policies , names based on the routines

29 // id’s must be unique!

30 ADD_DEVICE_POLICY( MultiplyM1Device , 0 );

31 ADD_DEVICE_POLICY( MultiplyM2Device , 1 );

32 ADD_DEVICE_POLICY( AddVec1Vec2Device , 2 );

33 ADD_DEVICE_POLICY( SumVec3Device , 3 );

34
35 // DevicePolicies class -template , expecting a list of policies (

defined above)

36 template <typename ... PolicyList >

37 struct DevicePolicies

38 {

39 enum { count = sizeof ... (PolicyList) };

40
41 template <typename Policy , typename First , typename ... Rest >

42 struct Get_

43 {

44 enum

45 {

46 id1 = Policy ::id ,

47 id2 = First::id

48 };

49
50 typedef typename If < id1 == id2 ,

51 typename First ::Device ,

52 typename Get_ <Policy , Rest ...>:: Device

53 >::Type Device;

54 };

55
56 template <typename Policy , typename First >

57 struct Get_ <Policy , First >

58 {

59 enum

60 {

61 id1 = Policy ::id ,

62 id2 = First::id

63 };

64
65 typedef typename If < id1 == id2 ,

66 typename First ::Device ,

67 void // policy not found! error!

68 >::Type Device;

69 };

70
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71 template <template <typename Device > class Policy >

72 struct Get

73 {

74 typedef typename Get_ <Policy <Dummy >, PolicyList ... >:: Device

Device;

75 };

76 };

When a type of the form DevicePolicies<...> is passed as a template parameter to a
Hybrid , the count-value can be used to find out how many policies were specified (mostly
to check for consistency). More importantly, its Get-member is used to get the device that
should be used for a certain routine. In our case, for example Get<SumVec3Device>::Device
will be a typedef for either CPU or GPU, depending on what you specified. Note that Get

expects a template template argument. This prevented me from using template specialization
techniques to find out which device was passed as a template argument to a certain policy.
Instead, I had to equip each of the policies with a unique ID that is used to match the
template-template parameter and extract its device-type.

6.3 Hybrid

1 template <typename DevicePolicies = OnlyCPUPolicy ,

2 typename CPUType = DefaultCPU ,

3 typename GPUType = DefaultGPU >

4 class Hybrid_: public CPUType , public GPUType

5 {

6 template <typename Device , typename Dummy = void >

7 struct UseParent;

8
9 template <typename Dummy >

10 struct UseParent <GPU , Dummy >

11 {

12 typedef GPUType Parent;

13 };

14
15 template <typename Dummy >

16 struct UseParent <CPU , Dummy >

17 {

18 typedef CPUType Parent;

19 };

20
21 template <typename DestDevice ,

22 typename SrcDevice ,

23 typename Dummy = void >

24 struct Sync

25 {

26 Sync(void*, void*, size_t , Hybrid_ <DevicePolicies >* = 0) {};

27 // default: don’t sync anything

28 };

29
30 template <typename Dummy >

31 struct Sync <CPUType , GPUType , Dummy >

32 {

33 CudaStopwatch d_sw;

34 Sync(void *host_ptr , void *dev_ptr , size_t size , Hybrid_ <

DevicePolicies , CPUType , GPUType > *timer = 0);

35 };

36
37
38 template <typename Dummy >

39 struct Sync <GPUType , CPUType , Dummy >

40 {

41 CudaStopwatch d_sw;

42 Sync(void *host_ptr , void *dev_ptr , size_t size ,

43 Hybrid_ <DevicePolicies , CPUType , GPUType > *timer = 0);
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44 };

45
46 typedef typename UseParent <typename DevicePolicies :: template

47 Get <MultiplyM1Device >:: Device >:: Parent MultiplyM1Device;

48 typedef typename UseParent <typename DevicePolicies :: template

49 Get <MultiplyM2Device >:: Device >:: Parent MultiplyM2Device;

50 typedef typename UseParent <typename DevicePolicies :: template

51 Get <AddVec1Vec2Device >:: Device >:: Parent AddVec1Vec2Device;

52 typedef typename UseParent <typename DevicePolicies :: template

53 Get <SumVec3Device >:: Device >:: Parent SumVec3Device;

54
55 public:

56 Hybrid_(Params const &params);

57
58 void init(Input const &in, Output const &out);

59 void close ();

60
61
62 void multiplyM1 ();

63 void multiplyM2 ();

64 void addVec1Vec2 ();

65 void sumVec3 ();

66
67 };

There are several things going on here, but let’s first focus on the public interface. It declares
the routines as specified in the specification file, returning void and accepting no arguments
at all. The implementation of these members is inherited from Hybrid ’s base-classes. More
on this later.

6.3.1 Synchronization

The programmer has specified which data is used by each of the functions. Therefore,
regardless of what happened prior to executing this function, this data should be up-to-
date on the active device. The class-template Sync was designed to serve exactly this
purpose. Let’s ignore the Dummy parameter, as it was only necessary to specialize Sync

within the scope of Hybrid (one of the template peculiarities in C++). Sync expects
two template parameters which should correspond to the parents of Hybrid (DefaultCPU
and DefaultGPU by default). The first argument corresponds to the destination device,
i.e. the device executing the current routine, whereas the second argument is the device that
currently has the data. By default, noting happens when a Sync object is being instantiated.
It is however specialized for two other cases: CPU → GPU, and GPU → CPU.

The implementation of Sync won’t be listed here, but all it does is call cudaMemcpy, where
the direction (e.g. cudaMemcpyHostToDevice) depends on the specialization. An example
of the implementation of one of the routines however, is listed below:

1 template <typename DevicePolicies , typename CPUType , typename GPUType >

2 void Hybrid_ <DevicePolicies , CPUType , GPUType >:: multiplyM1 ()

3 {

4 Sync <MultiplyM1Device , CPUType >( Memory :: hostMem.vec1 ,

5 Memory :: devMem.vec1 ,

6 sizeof(float)*Memory ::vectorSize ,

7 this);

8
9 Sync <MultiplyM1Device , CPUType >( Memory :: hostMem.vec2 ,

10 Memory :: devMem.vec2 ,

11 sizeof(float)*Memory ::vectorSize ,

12 this);

13 MultiplyM1Device :: multiplyM1 ();

14 }

Because the data-dependencies of multiplyM1() have been specified as input, they are
assumed to reside on the CPU. Therefore, the Sync instantiation uses CPUType as the source
and MultiplyM1Device as its destination for both vec1 and vec2. Here, MultiplyM1Device
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is one of the typedef’s from Hybrid , using the Get facility from the DevicePolicies

parameter.

7 Contact

HyCuda was developed as a by-product of a thesis, and was therefore never used in any major
project. I realise that I have probably overseen many (edge-)cases that complicate its use. I
am very curious to whether this will ever be used in a serious project, so any feedback is very
much appreciated! Don’t hesitate to contact me through email at jorenheit@gmail.com.

Thanks!
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